Border Security and Unmanned Aerial Vehicles

Jason Blazakis
Analyst in Social Legislation
Domestic Social Policy Division

Summary

The use of Unmanned Aerial Vehicles (UAVs) to improve border security is a technique that has garnered congressional attention. This report examines the strengths and limitations of deploying UAVs along the borders and related issues for Congress. This report is not intended to provide in-depth information regarding technical or military capabilities of UAVs, but to discuss their application at the border. This report will be updated as events warrant.

Background

Border Security has long been recognized as a priority by the Congress. The northern border separating the mainland United States and Canada is 4,121 miles long and consists of 430 official and unofficial ports of entry. The expansive nature and the possibility of entry through unpopulated regions make the border difficult to patrol. In July 2003, U.S. Customs and Border Protection (CBP) Commissioner Robert Bonner announced that an additional 375 border patrol agents would be reassigned to the northern border. This increase brought the number of border patrol agents to one thousand. Commissioner Bonner also noted that CBP’s border agents had, “the front line responsibility for detecting terrorists and terrorist weapons.”

The southern border separating the United States and Mexico is 2,062 miles long and consists of thirty ports of entry and “innumerable unofficial crossings.” Unlike the northern border, however, as of January 2003, 10,408 border patrol agents were stationed

3 Ibid.
on the southern border. Despite this larger presence, illegal border crossings and significant drug smuggling activities occur frequently.

In addition to border patrol agents the borders are monitored and protected by video cameras, ground sensors, physical barriers, land vehicles and manned aircraft. The diverse nature of U.S. border defense is challenged by an equally diverse array of threats ranging from terrorists to drug smugglers, arms dealers, and human traffickers. Past difficulties in securing the borders in conjunction with fears that terrorists could exploit existing security vulnerabilities by surreptitiously crossing the borders has prompted Congress to call on the Department of Homeland Security (DHS) to examine the potential use of Unmanned Aerial Vehicles (UAVs).

UAVs are also known as drones or remotely piloted vehicles (RPVs). The Department of Defense defines a UAV as a powered aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry lethal or nonlethal payloads. UAVs have played important roles in recent conflicts in Bosnia, Kosovo, Afghanistan, Pakistan and both Gulf Wars. Historically, UAVs have been utilized in various military settings outside of U.S. borders. For example, during Vietnam and the recent crises in the Balkans, UAVs provided real-time reconnaissance, surveillance, target acquisition, search and rescue and battle damage assessments.

UAV technology has also been applied domestically. The NASA sponsored Environmental Research Aircraft and Sensor Technology (ERAST) program has produced civilian UAVs to monitor pollution and measure ozone levels. Academia has also been active in exploring civilian uses for UAVs. The Massachusetts Institute of Technology (MIT) is involved in developing Global Positioning Systems (GPS) and video camera guidance for locating and identifying toxic substances. The Department of Energy recently announced that it will test UAVs outfitted with radiation sensors to detect potential nuclear reactor accidents.

5 Numerical figure provided by the United States Bureau of Customs and Border Protection.

6 It is important to note the distinction between drones and RPVs. Both drones and RPVs are pilotless, but drones are programmed for autonomous flight whereas a ground control operator controls the flight pattern of RPVs.

8 For a discussion regarding the military application of UAV’s see CRS Report RL31872, Unmanned Aerial Vehicles: Background and Issues for Congress, by Elizabeth Bone and Christopher Bolkcom. For use of this technology by the Navy see CRS Report RS21294, Unmanned Vehicles for U.S. Naval Forces: Background and Issues for Congress, by Ronald O’Rourke.

9 More information regarding ERAST can be located at [www.erast.com].

On November 12, 2003, Congress agreed to the Department of Defense (DoD) Authorization Conference Report (H.R. 1588) which became P.L. 108-354 on November 24, 2003. Section 1034 of the DoD Authorization Act requires the President to issue a report “on the use of unmanned aerial vehicles for support of homeland security missions.” UAVs were recently tested for potential domestic application on the U.S.-Mexican border. UAV demonstrations conducted by various commercial companies at Fort Huachuca and Gila Bend, Arizona on behalf of the Department of Homeland Security’s Customs and Border Protection (CBP) Bureau have prompted various questions regarding their potential use within the United States. Shortly after the Arizona UAV demonstrations, DHS acknowledged that one model of UAV, the Predator B, would be used in Operation Safeguard, an experimental law enforcement program that will conduct missions along the U.S.-Mexican border.12 P.L. 108-90 on Appropriations for the Department of Homeland Security provides $35.2 million to establish a Northern Border airwing, of which $12.8 million will be available for aircraft procurement. In doing so, Congress supported functional and organizational Air and Marine Interdiction (AMI) and modernization efforts. Congress also tasked the DHS Under Secretary of Border and Transportation Security to devise a report outlining operational plans by which the Air and Marine Operations Center (AMOC) would eliminate surveillance gaps affecting the northern border and western United States.

Benefits and Limitations of UAVs

One potential benefit of UAVs is that they could fill a gap in current border surveillance. In particular, technical capabilities of UAVs could improve coverage along remote sections of the U.S. borders. Electro-Optical (E-O) identification technology is advanced enough that it can identify a potentially hostile target the size of a milk carton at an altitude of 60,000 feet.13 UAV’s also can provide precise and real-time imagery to a ground control operator, who would then disseminate that information so that informed decisions regarding the deployment of border patrol agents can be made quickly.

Another benefit of the UAV system is its loiter capabilities. The Predator B used in Operation Safeguard can fly for more than thirty hours without having to refuel.14 The UAV’s ability to loiter for prolonged periods of time has important operational advantages over manned aircraft. The longer flight times of UAVs means that sustained coverage over a previously exposed area may improve border security.

UAVs are less expensive than other manned aircraft used on the borders. The unit cost of UAVs varies widely. The Shadow UAV costs $350,000 while the Predator costs

12 The Department of Homeland Security’s Bureau of Immigration and Customs Enforcement (ICE) evaluated the Predator B used during Operation Safeguard, which began October 29, 2003, and ended November 12, 2003. The General Atomics Corporation remotely piloted the Predator B during simulated night and daytime border demonstrations.

14 For additional information regarding the Predator B technical capabilities see the General Atomics website at [http://www.uav.com/products/predator_b_er.html].
$4.5 million.15 In contrast, the unit cost of a P-3 manned aircraft used by U.S. Immigration and Customs Enforcement is $36 million. Blackhawk helicopters which are frequently used on the borders cost $8.6 million per unit. However, the benefit of the Blackhawk’s relative low unit cost is diminished by its lack of endurance. Blackhaws have a maximum endurance of 2 hours and 18 minutes.16 Consequently, UAVs longer dwell time would allow them to patrol the border longer.

The range of UAVs is a significant asset when compared to border agents on patrol or stationery surveillance equipment. If an illegal border entrant attempts to transit through dense woods or mountainous terrain, UAVs would have a greater chance of tracking the violator with thermal detection sensors than stationary video equipment which is often used on the borders. It is important to note, however, that rough terrain and dense foliage can degrade the images produced by an UAV’s sensory equipment and thus limit their effectiveness at the borders. The extended range and endurance of UAVs may lesson the burdens on human resources at the borders. During Operation Safeguard the prototype Predator B was remotely piloted from a ground control station. The safety concerns faced by helicopter pilots on patrol are eliminated when UAVs are used.

Despite potential benefits of using UAVs for homeland security, various problems encountered in the past may hinder UAV implementation on the border. There are concerns regarding UAVs high accident rate. Currently, the UAV accident rate is 100 times higher than that of manned aircraft.17 Because UAV technology is still evolving there is less redundancy built into the operating system of UAVs than of manned aircraft and until redundant systems are perfected mishap rates are expected to remain high. Additionally, if control systems fail in a manned aircraft, a well-trained pilot is better positioned to find the source of the problem because of his/her physical proximity. If a UAV encountered a similar system failure, or if a UAV landing was attempted during difficult weather conditions, the ground control pilot would be at a disadvantage because he or she is removed from the event. Unlike a manned pilot, the remote pilot would not be able to assess important sensory information such as wind speed.18

The key component of Operation Safeguard was to identify potential threats crossing the southern border illegally. The surveillance capabilities of UAVs equipped with only an E-O camera and Forward Looking Infrared Radar (FLIR) sensor have been limited in the past by poor weather conditions. Cloudy conditions and high humidity climates can distort the imagery produced by E-O and FLIR equipment. Although the Predator B is operating in the low-humidity environment of the Southwest, the effects of extreme climatic or atmospheric conditions on its sensors reportedly can be mitigated if DHS...

15 CRS Report RL31872, \textit{Unmanned Aerial Vehicles: Background and Issues for Congress}, by Elizabeth Bone and Christopher Bolkcom.

17 Ibid.

decides to outfit the Predator B with a synthetic aperture radar (SAR) system.19 Radars can produce high resolution imagery in inclement weather. The ability of SAR to function during adverse weather conditions sets it apart from optical or infrared systems.20 However, its ability to track moving targets is limited. This limitation can be mitigated by accompanying SAR with moving target indicator (MTI) radar technology. Adding SAR and MTI to the Predator B’s platform could significantly enhance its operational capability for border missions. By adding SAR and MTI to the UAV platform, however, the costs of using UAVs on the border would increase.

How UAVs could be integrated into civilian airspace within the United States is a fundamental question that would need to be addressed by the Federal Aviation Administration (FAA) and DHS. Integrating UAVs into civilian airspace so that they could operate safely would require not only the creation of regulatory guidelines by the FAA but also technical developments. Currently, the FAA is working on guidelines for integrating UAVs into the national air space (NAS). Although there are no guidelines or regulations for incorporating UAVs into the NAS, the FAA has worked closely with government users of UAV technology in developing a certificate of authority (COA) so NAS can be blocked off for exploratory development or operational testing. A primary concern of the FAA is whether UAVs can operate in already crowded airspace. The challenge, according to FAA spokesman William Shumann is, “to develop vehicles that meet FAA safety requirements if they want to fly in crowded airspace.”21 Before UAVs can be introduced into national airspace, the FAA, DHS and other relevant technology users will need to address collision-avoidance, communication and weather avoidance issues.22

Issues for Congress

Congress will likely conduct oversight of Operation Safeguard before considering wider implementation of this technology. Additionally, the President’s report to the Congress in April 2004 on use of UAVs for support of homeland security missions should be useful to congressional evaluations, especially with respect to the tactical, warning and intelligence capabilities of this technology. If implemented, would UAVs simply be used to monitor the border for illicit activity, or would they be utilized in a more sophisticated manner? In the future could UAV imagery be used to develop intelligence products on patterns and tactics used by illegal entrants?

19 According to General Atomics, the Predator B used during Operation Safeguard was equipped with E-O, FLIR and SAR.

20 For further information about Synthetic Aperture Radar (SAR) see the following website at [www.sandia.gov/radar/whatis.html]. The SAR system used by some Predators is called the LYNX. The LYNX system can provide photographic images of up to four-inch resolution at a maximum altitude of 40 kilometers in fair weather. For more about the LYNX system see the following website at [http://www.ga.com/news/lynx_sar.html].

22 In Nov. 2003, the FAA, DoD, NASA, and six private commercial companies launched Access Five, a five-year program to address the safety and technical concerns associated with using UAVs in national airspace.
If Congress concurs that UAVs can fulfill an important homeland security mission, how many UAVs would be needed to patrol the borders? A robust pilot program simultaneously testing multiple UAVs on the borders might be needed in order to ascertain where, how and whether UAVs should be deployed. Larger scale testing would provide an opportunity to evaluate whether limitations of UAVs would hinder their utility on the border. In the past, multiple UAVs piloted in close proximity to each other have experienced interference and loss of control between the UAV and the remote pilot. In many cases interference led to accidents. An expanded pilot program would provide an opportunity to evaluate UAVs under a more realistic operational setting. Additionally, testing multiple UAVs on the borders could help in establishing parameters under which they could successfully operate.

The use of UAV technology on the northern and southern borders could potentially act as an important force multiplier by covering previously unpatrolled areas. This comparative advantage, however, may not be so significant when terrorists, like the September 11 hijackers, can and have entered the country through more easily accessible official ports of entry. Another consideration is how well the CBP could respond to UAV imagery. Are there enough border patrol resources to investigate all UAV identified targets? Would the lack of human resources render high technology like UAVs less effective?

The technical capabilities of the UAVs have been tested in a military context, but serious safety and technical issues need to be addressed if the program is to be expanded domestically. Perhaps most importantly, a clearly defined role and action plan for the application of UAV technology to homeland security needs would need to be created. If DHS moves forward in efforts to use UAVs in national airspace, both broad and technical issues will arise for congressional consideration. For example, will UAVs be more cost effective or technically proficient in defending the borders than tethered aerostat radars (TARS), biometrics, more sophisticated ground sensoring equipment or additional border patrol agents?